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Optimal Estimation Theory for
Dynamic Systems with Set
Membership Uncertainty: An
Overview

M. Milanese and A. Vicino

ABSTRACT

In many problems, such as linear and nonlinear regressions, parameter and state
estimation of dynamic systems, state space and time series prediction, interpolation,
smoothing, and functions approximation, one has to evaluate some unknown
variable using available data. The data are always associated with some uncertainty
and it is necessary to evaluate how this uncertainty affects the estimated variables.
Typically, the problem is approached assuming a probabilistic description of
uncertainty and applying statistical estimation theory. An interesting alternative,
referred to as set membership or unknown but bounded (UBB) error description,
has been investigated since the late 60s. In this approach, uncertainty is described
by an additive noise which is known only to have given integral (typically /, or /,)
or componentwise (/,,) bounds. In this chapter the main results of this theory are
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reviewed, with special attention to the most recent advances obtained in the case
of componentwise bounds.

2.1. INTRODUCTION

Estimation theory is concerned with the problem of evaluating some unknown
variables depending on given data (often obtained by measurements on a real

process). Available data are always known with some uncertainty and itis necessary -

to evaluate how this uncertainty affects the estimated variables.

Obviously the solution of the problem depends on the type of assumptions
made about uncertainty. The cases most investigated so far are unquestionably
related to the assumption that uncertainty is given by an additive random noise with
a (partially) known probability density function (pdf).

However, in many situations the very random nature of uncertainty may be
questionable. For example, the real process generating the actual data may be very
complex (large scale, nonlinear, and time varying) so that only simplified models
can be practically used in the estimation process. The residuals of the estimated
‘model have a component due to deterministic structural errors. Treating them as
purely random variables may lead to unsatisfactory results. y

An interesting alternative approach, set membership or unknown but bounded
UBB error description has been pioneered by the work of Witsenhausen and
Schweppe in the late 60s.("**) In this approach, uncertainty is described by means
of an additive noise which is known only to have given bounds. The motivation for
this approach is that in many practical cases the UBB error description is more
realistic and less demanding than the statistical description. However, despite the
appeal of its features, the UBB approach is not widely used yet. Until the early 80s,
reasonable results and algorithms had been obtained only for uncertainty bounds
of integral type (mainly J,), while in practical applications componentwise bounds
(l,,) are mainly of interest. '

Real advances have been obtained in the last few years for the componentwise
bounds case, leading to theoretical results and algorithms which can be properly
applied to practical problems where the use of statistical techniques is questionable,

The purpose of this chapter is to review these results and to present them in a
unified framework, in order to contribute the present state of the art in the field and
simulate further basic and applied researches.

2.2. PROBLEM FORMULATION

In this section a general framework is formulated such that the main results in

the literature can be presented in a unifying view. Such formulation can be sketched
as follows.>
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We have a problem element A (for example a dynamic system or a time
function) and a function S(A) of this problem element (for example some parameter
of the dynamic system or particular value of the time function) is to be evaluated.
Suppose A is not known exactly, but there is some information on it. In particular
assume that it is an element of a set X of possible problem elements and that some
function F(A) is measured. Moreover, suppose that exact measurements are not
available and actual measurements y are corrupted by some error p.

The estimation problem is to find an estimator ¢ providing an approximation
&(») = S(\) using the available data y and evaluating some measure of such
approximation. A geometric sketch is shown in Fig 2.1.
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FIGURE 2.1. Generalized estimation problem.




2.2.1. Spaces and Operators

Let A be a linear normed n-dimensional space over the real field. Consider a
given operator S, called a solution operator, which maps A into Z

S:AZ @.n

where Z is a linear normed /-dimensional space over the real field. The aim is to
estimate an element S(A) of the space Z, knowing approximate information about
the element A. Suppose that two kinds of information may be available. The first
one (often referred to as a priori information) is expressed by assuming that
A e K, where K is a subset of A. In most cases K is given as

K={\eAIRA-AIS 1} 2.2)

where R is a linear operator and A is a known problem element. The second kind
of information is usually provided by the knowledge of some function F(A), where
F,called an information operator, maps A into a linear normed m-dimensional space
Y

F:A-Y. (2.3)

Spaces A, Z, Y are called problem element, solution and measurement spaces
respectively. In the following, unless otherwise specified, assume that A and Z are
equipped with /,, norms and Y is equipped with an /33 norm.'

In general, due to the presence of noise, exact information F()) about A is not
available and only perturbed information y is given. In this context, uncertainty is
assumed to be additive, i.e.,

y=F\)+p (2.4)
where the error term p is unknown, but bounded by some given positive number &

lll<e 2.5)

Note that if an /;; norm in measurement space Y is used, componentwise
bounds with different values on every measurement can be treated.
An algorithm ¢ is an operator (in general nonlinear) from Y into Z:

0:Y>Z : (2.6)

i.e., it provides an approximation ¢(y) of S(A) using the available data y. Such an
algorithm is also called an estimator. ‘

"The I norm is defined as |pll%, = max fwjly), w;>0
- i

man I
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Some examples are now presented in order to show how specific estimation
problems fit into this general framework. '

2.2.2. Example 1: Parameter Estimation of ARX Models
Consider the ARX model

P 9
Y= V¥t 2. Bt +py

i=] i=]

@7

where y; is a scalar output, u, is a known scalar input and p; is an unknown but
bounded error such that '

lpl<e, Yk 2.8)

_ Suppose that m values [y,,...,,] are known and the aim is to estimate parame-
ters [v;,0,]. For the sake of simplicity suppose thatp 2 ¢g. Acanbedefined asthe (p
+ g)-dimensional space with elements

A= [Vys oo V0 By, s 6,1 (2.9)

If no a priori knowledge on parameter A is available, then K = A.

Zis the (p + g)-dimensional space with elements z = A, so that S(A) is identity.
Y is the (m - p)-dimensional space with elements y = [y,.y, ..., ym)', and conse-
quently F()) is linear and is given by

yp oee yl ; up oo up_H_q
F(X) - . ves . . T . )\'_ (2.10)

Im-1 " Vmep Umet 7 Uy

2.2.3. Example 2: State Estimation of Linear Dynamic Systems

Consider the problem of estimating the state of the following discrete, linear,
time invariant dynamic system

Xpot =Axk+Buk 2.11)
Yo =Cx+p,

where x;, yi, 4y and p; are the state, observation, process noise and observation noise
vectors respectively; 4, B and C are given matrices. For the sake of simplicity,
suppose that x is /-dimensional and y, u, and p are scalar variables.

Assume that the samples of process and observation noise are unknown but
bounded '
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ul<U, Yk (2.12)
e, VE (2.13)

Suppose that m values [y}, ..., V] are known and the aim is to estimate x,,. A can
be defined as the / + m — 1-dimensional space with elements

A=xluy . u, 0 _ (2.14)

If no a priori information on the initial state x, is available, K is defined by
K=(heNul<U,j=1,...,m=1} S (215)

Zis the I-dimensional space with elements z = x,,. Y'is the m-dimensional space
with elements y= [y, ..., ym). Standard computation of solutions of the set of
difference Eq. (2.11) shows that the solution and information operator are linear
and are given by

S(A) =[4"",A™2B, ,AB.B]\ (2.16)
¢ 0 - 0 01
‘CA CB
CA2? C4B -~ 0 O 2.17
FO)=| . ..M

4™t CA™3B . CB 0
A"l C4™*B .. CAB CI

2.2.4. Example 3: Parameter Estimation of Multiexponential Models
Consider the multiexponential model ‘

) .
) =2 we™" +p(0) : (2.18)

i=l
where p; and v; are unknown real parameters and p(r) is unknown but bounded by
a given (f)

() < ). ' (2.19)

Suppose that m values [y(t;), y(f»)] are known and the aim is to estimate
parameters p;and v, i=1,,.., 1L ;

R AR
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By setting &, =¢™", , 1, the space A is taken as the 2/-dimensional

space with elements

A=lu, mbs L& (2.20)

S(\) can be taken as the identity operator. In this way, estimation of variables
E; is considered instead of v;. Original variables can be obtained by logarithmic
transformation.

Y is defined as the m-dimensional space with elements y = [y(t)), . . ., y(t,)] T
Then, information operator F(A) becomes the polynomial function

R
e ] = e (2.2 1)
Fm(’") ZI l«l'&'-"'

2.2.5. Example 4: Multistep Prediction with ARX Models

Consider the ARX model Eq. (2.7) and suppose that the aim is to estimate
Ym+h When past values [y, ..., ¥ are measured (h-step ahead prediction problem).
For the sake of simplicity, consider the case 1 =2,

The space A can be defined as the p + g + 2-dimensional space with elements

A=V sV By ity B Pprets Prraa) - Qe
If no a priori knowledge on parameter A is available, K is given by
K={A & A IPysil S €pars Ppaal S Epaal- 2.23)

Z is the 1-dimensional space with elements z = y,,,, and consequently S(A) is the
polynomial function given by

SQA) = (vivy +Vo)y, + (v1v2‘+ V)Y oy o Vo Yepil

+ 04Uy + (V)0 +0Ju, + -+ 61,

+ Vlpm+l + pm+2‘ (2'24)

Yis an (m — p) dimensional space with elements y = [y.1, ..., Vm) and F(A) is
linear and given by g
Y » u, Mt 0 0
F)=| - ST e (2.25)

Ym-1 ym-p Upy ”-.——.'.l 00
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2.3. MAIN DEFINITIONS AND CONCEPTS
This section provides definitions of the main sets involved in the theory,

optimality concepts used to evaluate estimator’s performances, and types of esti-
mators investigated. '

2.3.1. Relevant Sets

_The following sets play key roles in set membership estimation theory:
measurement uncertainty set:

MUS, = el ly-ys<e (2.26)
estimate uncertainty set (for a given estimator ¢); _
EUS, = ¢(M USy) 2.27)

feasible problem elements set;
FPS,= (AeK:|y=FMIy<e} (2.28)
and feasible solutions set
FSS,=S(F PS,). (2.29)

Note the difference between EUS, and FSS,. The former depends on the
particular estimator ¢ used and gives all possible estimated values that could be
obtained for all possible measurements consistent with the actual measurement y
and the given error bounds. The latter depends only on the problem setting and
gives all possible values which are consistent with the available information on the
problem. : '

In the literature on parameter estimation, where problem element A represents
the parameters to be estimated and S(A) is identity (see Section 2.2.2), FPS,
coincides with FSS, and has been given also different names such as feasible
parameters set, membership-set estimate and likelihood set.

An exact description of FSS, or EUS, is in general not simple, since they may
be very complex sets (e.g. non-convex, not simply connected). For this reason,
approximate descriptions are often looked for, using simply shaped sets like boxes

or ellipsoids containing (outer bounding) or contained in (inner bounding) the set
of interest (see Fig. 2.2). In particular minimum volume outer box (MOB) or
ellipsoid (MOE) and maximum volume inner box (MIB) or ellipsoid (MIE) are of
interest.

Information of great practical interest is also provided by the values uncer-
tainty intervals (VUI) and estimate uncertainty intervals (EUI), giving the maxi-

mum ranges of possible variations of the feasible and the estimated values,
respectively. The VUIs are defined as

i
i
i
£
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FIGURE 2.2. (a) Box and (b) ellipsoid o
inner- and outer-bounding. Ly
VUL=[Z"21 i=1,..,1, (2.30)
where
7= infzer.g %= infxemy s i=1, 1
and

7= SUP;erss?i = SUPrerps, S i=1,...,1 (2.31)

Mote that the VUTIs are the sizes (along coordinate axis) of the axis aligned box of
minimal volume containing FSS, (see Fig. 2.2).

The EUls are defined in the same way substituting EUS, for FSS,.

2.3.2. Errors and Optimality Concepts

Algorithm performance is measured according to the following errors:
F-local error E5(¢), where

E) = sup [IS) - oM (2.32)
AeFPS,
A-local error E$($), where
' EX@)= sup IS - ¢O)l (2.33)
yeMUS,

oy
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and global error E5(¢)
(2.34)

€

E*($) = sup E(¢) = sup E5(¢).
yet AeA

Dependence on ¢ is dropped out in subsequent notation, except when neces-
sarv.

Algorithms minimizing these types of errors are indicated respectively as
Y-locally, A-locally and globally optimal.

Notice that Y-local optimality is of particular interest in system identification
problems, where a set of measurements y is available and one wants to determine
the best achievable estimate S(A) for each possible y using an algorithm ¢(y). Also
A-local optimality is a particularly meaningful property in estimation problems,
since it ensures the minimum uncertainty of the estimates for the worst measure-
ment y, for any possible element A € K.

Y- and A-local optimality are stronger properties than global optimality, as can
be seen from Eq. (2.34). For example, a Y-locally optimal algorithm minimizes the
local error E,(¢) for all data y, while a globally optimal algorithm minimizes the
global error E(¢) only for the worst data. In other words, a Y-locally optimal
algorithm is also globally optimal, while the converse is not necessarily true.

2.3.3. Classes of Estimators

Some classes of estimators whose properties have been investigated in the
literature are now introduced.

The first class is related to the idea of taking the Chebicheff center of FSS, as
estimate of S(A). The center of FSS,, ¢(FSS,), and the corresponding radius,
rad(FSS ), are defined by

sup llc(FSS,) -2l = inf sup iz - zI| = rad(FSS,). ' (2.35)
zeFSSy zeZ zeFSSy .
A central estimator ¢° is defined as
¢°0) = e(FSS,) (2.36)

The second class includes estimators analogous to unbiased estimators in
statistical theory, which give exact values if applied to exact data.
An estimator ¢ is correct if

MFA)=SA) YA eA. (2.37)
Such a class is meaningful only for / < m, that is, when there are at least as many
measurements as variables to be estimated (the typical situation in estimation
practice). This class contains most of the commonly used estimators, such as
projection estimators.

i
E
§
£
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A projection estimator ¢7 is defined as

40 = S0,) (2.38)

where A, € A is such that

lly ~ FA)I = inflly = FQ)II. (2.39)
AeA

The most widely investigated and used estimators in this class are least square
estimators (¢*5), which are projection estimators when an /; norm is used in space
Y. Least-absolute values and least-maximum value estimators have been also
considered in the literature, which are projection estimators when /; and /,, norms
are respectively used in space Y.
. In the next sections the results available in the literature regarding the follow-
ing aspects are reviewed: existence and characterization of estimators, optimal with
respect to some of the optimality concepts introduced previously; actual computa-
tion of the derived optimal estimators; evaluation-of the errors of optimal and of
projection estimators; and exact or approximate description of feasible sets
FPS,, FSS, and estimate uncertainty set EUS,. Whenever possible, a statistical
counterpart of the presented results is indicated, based on the analogy:

Y-local optimality <> minimum variance optimality
FSS, < minimum variance estimate pdf

EUS, <> estimate pdf

EUI’s < estimate confidence intervals

VUIs < Cramer-Rao lower bound confidence intervals.

2.4. NONLINEAR PROBLEMS

A first important result is related to the existence of a Y-locally optimal
estimator. No general results are available for A-locally optimal estimators. This
result also shows that the minimum Y-local error is given by the radius of FSS,.

Result 1. 9 A central estimator ¢¢ is Y-locally optimal g

E$)SE(®) Vye Y, Vo (2.40)
Its Y-local error is |
E(¢°) = rad(FS,) (241

This result holds forany normin A, Z, Y, O
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It can be considered as the counterpart of the conditional mean theorem in
statistics. As with conditional mean estimators, central estimators are in general
difficult to compute. The computation of ¢° involves the knowledge of . SS,, which
may be a very complex set (nonconvex, not simply connected).

Several approaches have been proposed to describe FSS,, mainly in papers
related to dynamic system parameter estimation. In Ref. 7 a random sample of
parameters is generated by a Monte Carlo technique, and Egs. (2.4 and 2.5) are used
to check if they belong to FSS,. Global optimization methods based on random
search are used in Refs. 8 and 9 to construct the boundary of FSS,. In Ref. 8
projections of FSS, onto coordinate one-dimensional or two-dimensional subspaces
are looked for. In Ref. 9 intersections of the boundary of FSS, with bundles of
straight lines centered at points inside FSS, are searched. The optimization methods
used in these papers converge in probability to the global maximum or minimum
of interest. However, this convergence property is not very useful in practice,
because no estimate is given of the distance of the achieved solution from the global
solution. Moreover, all these approaches suffer the curse of dimensionality. These
reasons motivate the interest in looking for less detailed but more easily computable
information on FSS,,. _

An important result in this direction is that the computation of ¢° and of its
Y-local error do not require the exact knowledge of FSS,, but only of the VUIs.

Result 2.1 The center ¢(FSS,) can be computed as '

c(FSS)) = HM+zm/2 i=1,..,1 (2.42)

The radius rad(FSS,) can be computed as
rad(FSS,) = max(z)’ - 2")/2 (2.43)
where 2 and z are given by Eq. (2.31). ' O

Result 2 states that the computation of a central algorithm and of minimum
Y-local error is equivalent to the computation of the VUIs, requiring the solution
of only 2/ optimization problems of the type Eq. (2.31).

Equation (2.31) problems are in general not convex, exhibiting local extrema.
Any of the general global optimization algorithms available in the literature give
approximate solutions converging to the exact ones only in probability and, more
seriously, they do not provide any assessment on how far the approximate solution

.

is from the correct one. : ‘
If S(A) and F() are polynomial functions, specific global algorithms exist, for

obtaining better results. '
Result 3.(9 If S(A) and F(A) are polynomial, algorithms exist converging with

certainty to global extrema of Eq. (2.31).
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Under the assumptions of Result 3, Eq. (2.31) are polynomial optimization
problems, in the sense that both cost functions and constraints are polynomials in
A. Polynomial problems are in general nonconvex and may admit local extrema.(')
Nevertheless, if all the variables are strictly positive (in which case the term
signomial problems is used), an algorithm is available to find a global maxi-
mum.('®'2!3) The underlying idea of this algorithm is to construct a sequence of
convex problems approximating the original problem iteratively better. In this way,
the algorithm generates a sequence of lower and upper bounds of the globai
extremum, converging monotonically to it. If the sign of some of the variables is
not known, it is possible to reduce a polynomial problem to a signomial problem
by setting these variables as the difference of strictly positive new variables.

The hypothesis of Result 2 covers large classes of problems, as shown in
examples (2.2.2-2.2.5). The implication is that an optimal estimator and its error
can be exactly computed for several nonlinear problems of practical interest. No
analogous result is available in the statistical context.

Most of the papers in the literature focus on studying FSS,, while very few

results are available on EUS,. For any correct estimator, FSS, is an inner bounding
setof E US,,,.(“) ‘

Result 4.9 If ¢ is correct then

FSSygEUSﬁ VyeY (2.44)

Hence, for correct estimators the VUIs are lower bounds of the EUIS, that is,
VUL EUIL, i=1,...,] (2.45)

. Consider the properties of projection estimators. In general they are not
optimal with respect to any of the three considered type of errors.!'> However they
are almost Y-locally optimal (within a factor 2) as shown by the following result.

Result 5.'® A projection algorithm ¢”'is such that

E'y(d)f’) <2 rad(FSS) < ZE),(¢) VyeY, V¢ (2.4[§__)]

_ Projection estimators enjoy interesting properties of robustness with respect
Fo inexact knowledge of the uncertainty bound ¢. Central estimators are not robust
in such a sense: a central algorithm computed supposing that ¢ = gy may not be
optimal if the actual ¢ is different. A central estimate ¢°(y) may not even belong to
the actual FSS, and its Y-local error E\(6) may be greater than 2 rad(FSS,).
. On the contrary, projection estimators are robustly almost Y-locally )c:)ptimal
independent of the volume of &, as shown by the next result. ’

Result 6.9 Let ¢ be the projection estimator. Then

E($") <2 rad(FSS,) S 2E($) Vy € ¥, V4, Ve (2.4[7:)]
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Projection estimators also have nice properties in a statistical context. For
example, an l,-projection estimator is the maximum likelihood estimator (MLE) if
noise p is supposed to be gaussian; an /,-projection estimator is the MLE if noise
is supposed to have a Laplace pdf; an /,-projection estimator is the MLE if noise
is uniformly distributed. Projection estimators /; and [, also have interesting
robustness properties with respect to uncertainty in the pdf’s knowledge.('”-'#!9

2.5. LINEAR PROBLEMS

Consider the case in which S(A) and F(L) are linear. In this case, Eq. (2.4) is
written as

y=ah+p (2.48)

where 4 is a matrix of dimension (m, n).

These assumptions are restrictive, but include cases of practical interest such
as parameter estimation of linear regressions, parameter estimation of ARMA
models with polynomial trends and harmonic components, state estimation of
dynamic systems, and time series forecasting. Moreover, if uncertainty bounds are
not too large, linear theory can be used for a first approximate analysis using some
linearization techniques.

From Result 1 a central estimator is Y-locally and globally optimal. In the linear
case it is also correct and A-locally optimal in the class of correct estimators, as
shown in the next result.

Result 7.9 ¢¢ is Y-locally optimal:

E($)V<E($) Vo (249)

¢¢ is a A-locally optimal (among correct estimators)

E,(§)ZE,(¢) YA e K,V ¢correct (2.5|0:)]

In Ref. (15) it is proven that Result 7 holds for any normin Y.

Under the present assumptions, FSS, and FPS, are polytopes. Then from
Result 2 it follows that ¢ and its Y-local error E,(¢°) can be obtained by solving
the 2/ linear programming problems of Eq. (2.31).

A linear estimator can be computed, which is correct, globally optimal, and
A-locally optimal within the class of correct estimators. This gives a complete
solution to the linear case, representing the counterpart of the Gauss-Markov theory
in statistical estimation. )

Result 8.%' Let K = A and m 2 n. Then there exists a linear estimator H* that

is correct and globally optimal

PETR e i e = 4 s
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E(H')<E($) V ¢ (2.51)
The linear estimator A" is A-locally optimal (among correct estimators)
E\(H)SE($) VA e A,V ¢ correct (2.52)
Its errors are
E(H")=E\(H") = E4(H") = rad(FSS,) VL e A (2-5[3:)]

Estimator A~ can be computed from the knowledge of the active constraints
of the linear programming problems of Eq. (2.31) with y = 0.9

Incase thatan /,-normisusedin ¥, H" can be computed by least-squares. Under
this assumption, the least squares estimator is linear and correct, robustly Y-locally
optimal and A-locally optimal within the class of correct estimators, as shown by
the next result. A

Result 9.9 Let K= A, m 2 n and Y be a Hilbert space. Let ¢S be the projection
(least square) estimator. Then: )
"5 is central, linear, correct and robustly Y-locally optimal

EXO™)SE() VyeY, Vo, Ve (2.54)
¢ is A-locally optimal (among correct estimators)
E,")<E,(¢) VA e A,V ¢ correct (2.5&)]

The sets FPS,, FSS, and EUS,, (for linear ¢), are polytopes described by the
sets of linear inequalities appearing in Egs. (2.27-2.29). This is not the simplest
way to describe them (for example, many linear inequalities may not concur to
defining the boundary of the polytope) and simpler descriptions could be of interest.
One way of characterizing a polytope P is.through its vertices. Algorithms exist
which allow one to compute recursively the vertices of a polytope P;, defined by
the first k¥ measurements, from the knowledge of P;_, and the k-th measure-
ment.?!%22329) The number of vertices may be relatively smaller than the theoreti-
cal maximum. For example, Monte Carlo simulations on ARMA models parameter
estimation,> have shown that the mean number of vertices of FSS, is approxi-
mately constant for m > 50. For /=4 and [ = 5, for example, they are approximately
50 and 150, respectively.

Polytopes can be represented alternatively by describing their faces. This
representation is used to derive a recursive algorithm.®® This approach seems more
involved than the previous one, but it also allows the recursive computation of an
outer bounding polytope with a fixed number of faces, leading to an approximating

- description of the polytope of interest by means of a polytope of prescribed

complexity.



20 M. MILANESE AND A. VICINO

The most investigated approaches to approximate description of polytopes are
through ellipsoids and boxes for the case of parameter estimation, where the
polytope of interest is the feasible parameter set. ‘

A recursive algorithm for outer bounding ellipsoid computation has been
proposed in.®® The underlying idea is as follows.

Let OE,., be the outer ellipsoid bounding Py_,. Let R, be the feas1ble parameter
set corresponding only to the k-th measurement

Ry={AeA: y,‘—ek<ak7» <yk+sk} (2.56)

where af is the k-th row of 4
Clearly P, < OE;_| N Ry. OE, is computed as the minimal volume ellipsoid

containing OF;_, N Ry, and then containing Py also. . '
If an ellipsoid OE; is defined by its centers Af and positive definite matrix Z;

according to
OE,={Ae A:(A-2DTE! A -2) <1} Q.57

the following recursive algorithm has been obtained. .
Result 10.29 The ellipsoid OE; can be computed by the recursion

OV (2.58)
S

c.__"¢
Ae=Ap, + -
k

2

= (] + 0, —7——)V (259)

¥+ Orby

where
o _aaZ_

V=%, - ke U (2.60)

ek + Ol
V=Y a[kk_, (2.61)
We=ay Z,_,a; (2.62)

and o, is the positive solution of the equation
(- Dp2o? + [(21 - 1e2 = p + VA S, + 2l ~ v - ] =0 (2.63)

if a positive solution exists, otherwise o, = 0. : O
Computational complexity of this algorithm and slight modlﬁcatxons for
implementation on a systolic architecture can be found.?” A modification of this

e et mel
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algorithm with data- dependent updating and forgetting factor has been pro-
posed.®®

A similar approach can be used for the recursive computation of inner bound-
ing ellipsoids.®>? Let IE,_, the inner bounding ellipsoid contained in Py_;. Then
IE, is chosen as the maximal volume ellipsoid such that

IE,cIE,,AR,CP, (2.64)

The resulting recursive algorithm is much as for the outer bounding ellipsoid
and is not reported here. '

The main drawback of these recursive algorithms is that they do not give the
minimal and maximal volume ellipsoids bounding the feasible parameter set.?93"
This is true also for improved versions.of the algorithm.®!%? Since JE, has an
unfortunate tendency to shrink rapidly and vanish,®® the inclusion
IEy, ¢ P, < OE, in practice may not give any reasonable information on the loose-
ness of bound OE;.

A nonrecursive solution to the problem of finding the minimal volume outer
ellipsoid contained in FPS, (MOErpg and the maximal volume inner ellipsoid
contained in FPS, (MIErpg, has been proposed.334 The solution for MIEgps is
given by the following result.

Result 11.% The MIEgpg has center A°* and matrix =* solution of

max det(Z) (2.65)
subject to
@+ e~ ulsu,20,i=1,...,2m

AL u,T f+c;20,i=1,...,2m
£>0,i=1,...,n

where £, i=1,.. ., n are the principal minors of £, and matrix U € R®™" (with
rows denoted by u; ) and vector ¢ € R*" are given by

U=[AT|- AT c=[TpT (2.66)
Y= [}"l —~EW, Yy T EW,, ... s Vm ™ Swm]T
=D rewy tew, Ly, vew, )T (2.6|7:)]

Equation (2.65) is a polynomial opt1m1zat10n problem and can be solved by
use of signomial programming.”'® The solution of Eq. (2.65) may be computation-
ally cumbersome, even for a few parameters. Then less general but simpler
solutions may be of interest. For example, the maximum ellipsoid of given shape
may be sought. Consider that I is given except for a scale factor (for example the




N = i o

*
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shape of the outer ellipsoid given by Result 10 can be used). In .such a case, Eq.
(2.65) reduces to a linear programming problem with (n + 1) variables and (2m +
1) constraints.

The solution for MOEgps also can be obtained by solving a suitable polynomial
problem.®¥ Unfortunately, the computational complexity is high for the general
case, and does not reduce, as for MIEgps, if restricted classes of ellipsoids are
considered. 3

For the computation of extremal volume inner and outer boxes definitions are
as follows.

Abox is defined as:

BOSLR) ={Le At IRA-AIL<1) (2.68)

where R is an orthonormal matrix. The box is described by its center A, axis lengths
I; and rotation R. If R = I the box is aligned with coordinate axis.

A solution to the problem of finding the minimal volume outer box contained
in FPS, (MOBgps) is provided in Ref. 34 as solution of a suitable polynomial
problem Its computational complexity is high, unless the rotation of the box is
given. In such a case the problem can be reduced to a linear programming problem.
In particular, if R = I the axis-aligned MOBgg can be computed directly from Eq.
(2.31). This requires the solution of 2/ linear programming problems with n
variables and 2m inequalities constraints.

The solution to the problem of finding the maximal volume inner box con-
tained in FPS, (MIBps) is provided by the following result.

Result 12.09 The MIBpghas center A°*, axis length /" and rotation R” solution

of

max [} (2.69)
subject to
(150,i=1,.
4Rr)f+c) J_lllu|>01—1 , 2m
'TR =] : D

Equation (2.69) is a polynomial optimization problem which can be solved by
use of signomial programming. If matrix rotation R is fixed, Eq. (2.69) reduces to
a convex problem with 2n variables and (2m + n) linear constraints, which can be
efficiently solved by means of normally available convex programming algorithms.
If axis length / is also fixed except for a scale factor (i.e., the maximum box of a
given shape is sought), Eq. (2.69) reduces to a linear programmmg problem with
(n + 1) variables and (2m + 1) constraints.
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2.6. OTHER TYPES OF RESULTS

This section briefly recalls papers on topics related to set membership estima-
tion theory, such as experiment design, estimation with reduced order models, and
uncertainty in the information operator. Almost all these papers consider linear
problems.

2.6.1. Experiment Design

In the previous sections information operator 2 is supposed to be given. In
some practical application it is possibie to choose among different information
operators A (optimal information problem). For example it may be possible to
choose the sampling times at which measurements are taken of the input and the
output of the dynamic system to be identified. Then a natural choice is the one
minimizing the error E;(¢°). In Ref. 35 some results are given for the case in which
information is provided by sampling.®® In Ref. 20 similar results are derived for
more general classes of information. In this'paper it is also shown that the optimal
sampling times can be chosen a priori, and no improvements can be obtained by
means of more sophisticated sampling schemes.®® The optimal sampling problem
is approached through p-widths theory.®®

Another criterion is to minimize the volume of FPSy.(zg’ In Ref. 29 a recursive
selection procedure is given based on heuristics to avoid poor choices without
guaranteeing the best. Characterization is given of the minimum number of sam-
pling times assuring minimum volime of the feasible parameter set FPS, for
y=4\inRef. 37.

2.6.2. Reduced Order Models

In the previous sections, it is supposed that the structure of the problem is
known, for example the number of autoregressive and moving-average terms for
an ARMA model. In many cases, however, the structure of the problem and in

particular the dimension of space A is not known and must be evaluated from the

available information (order determination problems). Some methods are analo-
gous to methods widely used for order determination in statistical contexts, 8%
such as the principal component analysis and singular value decomposition. A
method is also proposed, based on the expected behavior of FPS,, for overparame-
terized and underparameterized structures.

A second important problem is how estimation algorithms can take into
account that only approximating structures are used. The usual approach in statis-
tical contexts is to ignore the deterministic nature of modeling errors, and eventually
discard badly approximating structures with residuals evidently not satisfying the
assumed statistical hypotheses. In the UBB approach, modeling errors can be taken
into account in a more natural way, since it is possible to evaluate bounds on such
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modeling errors. %4142 A deeper analysis considers explicitly that using approxi-
mating structures corresponds to restricting the analysis to a subset K < /.\.not
containing the “true” problem element A.“ In this paper, the concept of condition-
ally central estimator is introduced as an extension of a central estimator, and it is
shown to be Y-locally optimal. The same paper shows that there are two possnbl.e
ways of extending least squares estimators, The first one corresponds to what is
usually done (more or less explicitly) when dealing with reduced order- models.
However, this estimator does not preserve any of the interesting optimality prop-
erties of least squares estimators. A second type of extension is introduced, which
is shown to have interesting A-locally and Y-locally optimality properties.

2.6.3. Uncertain Information Operator

In some papers the case in which information matrix A4 is not exactly known
is studied. In particular, perturbation of the type A= 4, + AAhas been considergd,
where 4, is given and A4 s not known but bounded. A modification of the rezurswe
algorithm for outer ellipsoid bounding reported in Result 10 is proplqsed.‘ ) Two
different extensions of FPS, are considered in Refs. 45 and 46. FPTS»" is defined in
Ref. 45 by considering that Eq. (2.28) holds for all A2 and is described by a set of
m2™! linear inequalities. In Ref. 46, FPS? is defined by considering that Eq. (2.28)
holds for some A4, and the problem of finding the corresponding MOB by means
of suitable linear programming problems is also discussed.

2.7. APPLICATIONS

The UBB approach is now beginning to be used in various applic:ation ﬁ(ﬁcﬁi
Some papers report applications to real word problems arisix:)gs'lin blolog}f, ('52)
pharmacokinetics,“""‘” time series filtering and prediction,(s 85; ;conorqlcs,(sg)
chemistry,®® image processing,** ecology,***® measurement,®*7*® tracking,
and speech processing,(27:60:61:62) . _

Application of set membership estimation theory has also been 1nves§1ggtg?
in the context of identification for robust and adaptive control design,28:63.6441.42.65)
and in Chapters 27-30 of this volume.

2.8. CONCLUSIONS

In this chapter an outline of the main results in the area of gstimation theory
for set membership uncertainty has been presented. The main emphasis of the paper
is on the following aspects: existence and characterization of worst-case optimal
estimators; actual computation of the derived optimal estimators; evaluation of the
errors of optimal and of other widely used estimators (least squares, least absolute
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values, least maximum values); exact or approximate description of feasible
parameter and solution sets, A quick reference to less assessed topics such as
experiment design, reduced-order modeling, and more general error models are also
made in the paper. ,

Some general considerations may be drawn from this overview.

Concerning linear problems, real advances have been done in the last decade.
Asaresult, properties of estimators and exact or approximate description of feasible
parameter and solution sets can be considered subjects with reasonably well
understood and usable solutions. In fact, many of the available algorithms have
been used for several applications in different real world problems.

Concerning nonlinear problems, in spite of the work done in the last few years,
much more remains to be done. Some algorithms for computing exact parameter
or solution uncertainty intervals have been proposed. They work reasonably well

on problems with a limited number of measurements and parameters. However,

their behavior in more complex situations has not been deeply investigated yet.

Several basic problems remain open andneed a thorough investigation, both
for linear and nonlinear problems, for example the topological properties of the
feasible parameter set as a function of the nonlinearity and uncertainty structures,
inner and outer bounding for the nonlinear case, the effects of model approxima-
tions, the interaction of set membership estimation theory and robust or adaptive
control. \
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